
Search Engines

Information Retrieval in Practice

All slides ©Addison Wesley, 2008

Indexes

• Arrays
• Hash table
• Queue
• Priority Queue
• B-trees
unsorted arrays are slow to search, and sorted
arrays are slow at insertion. By contrast, hash
tables and trees are fast for both search and
insertion.

Indexes

• Arrays
• Hash table
• Queue
• Priority Queue
• B-trees
Which one is good for Text Search?

Indexes

• Arrays
• Hash table
• Queue
• Priority Queue
• B-trees
Which one is good for Text Search?

Indexes

• Which one is good for Text Search?
• Efficient query processing is a particularly

important problem in web search.
• The query processing algorithm depends on

the retrieval model, and dictates the contents
of the index.

RANKING

Text search engines use a particular form of
search: ranking
– documents are retrieved in sorted order according

to a score computing using the document
representation, the query, and a ranking algorithm

• What is a reasonable abstract model for
ranking?
– enables discussion of indexes without details of

retrieval model

Abstract Model of Ranking

Abstract Model of Ranking

1. The text is transformed into index terms or document features
2. Topical features estimate the degree to which the document is about a
particular subject.
3. Document quality feature:

3.1 The number of web pages that link to this document,
3.2 The number of days since this page was last updated.

More Concrete Model

Inverted Index

• Each index term is associated with an inverted list
– Contains lists of documents, or lists of word

occurrences in documents, and other information
– Each entry is called a posting
– The part of the posting that refers to a specific

document or location is called a pointer
– Each document in the collection is given a unique

number
– Lists are usually document-ordered (sorted by

document number)

Example “Collection”

Simple Inverted
Index

Inverted Index
with counts

• supports better
 ranking algorithms

Inverted Index
with positions

• supports
proximity matches

Proximity Matches

• Matching phrases or words within a window
– e.g., "tropical fish", or “find tropical within

5 words of fish”
• Word positions in inverted lists make these

types of query features efficient
– e.g.,

Fields and Extents

• Document structure is useful in search
– field restrictions
• e.g., date, from:, etc.

– some fields more important
• e.g., title

• Options:
– separate inverted lists for each field type
– add information about fields to postings
– use extent lists

Extent Lists

• An extent is a contiguous region of a
document
– represent extents using word positions
– inverted list records all extents for a given field

type
– e.g.,

extent list

Other Issues

• Precomputed scores in inverted list
– e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is

total feature value for document 1
– improves speed but reduces flexibility

• Score-ordered lists
– query processing engine can focus only on the top

part of each inverted list, where the highest-
scoring documents are recorded

– very efficient for single-word queries

Compression

• Inverted lists are very large
– e.g., 25-50% of collection for TREC collections using Indri

search engine
–Much higher if n-grams are indexed

• Compression of indexes saves disk and/or memory
space
– Typically have to decompress lists to use them
– Best compression techniques have good compression

ratios and are easy to decompress
• Lossless compression – no information lost

Skipping

Consider the Boolean query “ galago AND
animal ”. The word “animal” occurs
in about 300 million documents on the Web
versus approximately 1 million for
“galago.” If we assume that the inverted lists for
“galago” and “animal” are in doc-
ument order, there is a very simple algorithm for
processing this query:

Skipping
•Let d g be the first document number in the inverted list for
“galago.”
• Let d a be the first document number in the inverted list for
“animal.”
• While there are still documents in the lists for “galago” and
“animal,” loop:
– If d g < d a , set d g to the next document number in the “galago”
list.
– If d a < d g , set d a to the next document number in the “animal”
list.
– If d a = d g , the document d a contains both “galago” and “animal”.
Move both d g and d a to the next documents in the inverted lists for
“galago” and “animal,” respectively.

Skipping

• Search involves comparison of inverted lists of
different lengths
– Can be very inefficient
– “Skipping” ahead to check document numbers is

much better
– Compression makes this difficult
• Variable size, only d-gaps stored

• Skip pointers are additional data structure to
support skipping

Skip Pointers

• A skip pointer (d, p) contains a document
number d and a byte (or bit) position p
– Means there is an inverted list posting that starts

at position p, and the posting before it was for
document d

skip pointers
Inverted list

Index Construction

Simple in-memory indexer

Merging

• Merging addresses limited memory problem
– Build the inverted list structure until memory runs

out
– Then write the partial index to disk, start making a

new one
– At the end of this process, the disk is filled with

many partial indexes, which are merged
• Partial lists must be designed so they can be

merged in small pieces
– e.g., storing in alphabetical order

Merging

Distributed Indexing

• Distributed processing driven by need to index
and analyze huge amounts of data (i.e., the
Web)

• Large numbers of inexpensive servers used
rather than larger, more expensive machines

• MapReduce is a distributed programming tool
designed for indexing and analysis tasks

Example
• Given a large text file that contains data about

credit card transactions
– Each line of the file contains a credit card number

and an amount of money
– Determine the number of unique credit card

numbers
• Could use hash table – memory problems
– counting is simple with sorted file

• Similar with distributed approach
– sorting and placement are crucial

MapReduce
• Distributed programming framework that focuses

on data placement and distribution
• Mapper
– Generally, transforms a list of items into another list

of items of the same length
• Reducer
– Transforms a list of items into a single item
– Definitions not so strict in terms of number of outputs

• Many mapper and reducer tasks on a cluster of
machines

MapReduce
• Basic process
– Map stage which transforms data records into pairs,

each with a key and a value
– Shuffle uses a hash function so that all pairs with the

same key end up next to each other and on the same
machine

– Reduce stage processes records in batches, where all
pairs with the same key are processed at the same time

• Idempotence of Mapper and Reducer provides
fault tolerance
– multiple operations on same input gives same output

MapReduce

Example

Indexing Example

Result Merging

• Index merging is a good strategy for handling
updates when they come in large batches

• For small updates this is very inefficient
– instead, create separate index for new documents,

merge results from both searches
– could be in-memory, fast to update and search

• Deletions handled using delete list
– Modifications done by putting old version on

delete list, adding new version to new documents
index

Query Processing

• Document-at-a-time
– Calculates complete scores for documents by

processing all term lists, one document at a time
• Term-at-a-time
– Accumulates scores for documents by processing

term lists one at a time
• Both approaches have optimization techniques

that significantly reduce time required to
generate scores

Document-At-A-Time

Document-At-A-Time

Term-At-A-Time

Term-At-A-Time

Optimization Techniques

• Term-at-a-time uses more memory for
accumulators, but accesses disk more
efficiently

• Two classes of optimization
– Read less data from inverted lists
• e.g., skip lists
• better for simple feature functions

– Calculate scores for fewer documents
• e.g., conjunctive processing
• better for complex feature functions

Conjunctive
Term-at-a-Time

Conjunctive
Document-at-a-Time

Threshold Methods

• Threshold methods use number of top-ranked
documents needed (k) to optimize query
processing
– for most applications, k is small

• For any query, there is a minimum score that each
document needs to reach before it can be shown
to the user
– score of the kth-highest scoring document
– gives threshold τ
– optimization methods estimate τ ′ to ignore documents

Threshold Methods

• For document-at-a-time processing, use score
of lowest-ranked document so far for τ ′
– for term-at-a-time, have to use kth-largest score in

the accumulator table
• MaxScore method compares the maximum

score that remaining documents could have to
τ′
– safe optimization in that ranking will be the same

without optimization

MaxScore Example

• Indexer computes μtree

– maximum score for any document containing just “tree”

• Assume k =3, τ ′ is lowest score after first three docs
• Likely that τ > μ′ tree

– τ ′ is the score of a document that contains both query
terms

• Can safely skip over all gray postings

Other Approaches

• Early termination of query processing
– ignore high-frequency word lists in term-at-a-time
– ignore documents at end of lists in doc-at-a-time
– unsafe optimization

• List ordering
– order inverted lists by quality metric (e.g.,

PageRank) or by partial score
– makes unsafe (and fast) optimizations more likely

to produce good documents

Structured Queries

• Query language can support specification of
complex features
– similar to SQL for database systems
– query translator converts the user’s input into the

structured query representation
– Galago query language is the example used here
– e.g., Galago query:

Evaluation Tree for Structured Query

Distributed Evaluation

• Basic process
– All queries sent to a director machine
– Director then sends messages to many index servers
– Each index server does some portion of the query

processing
– Director organizes the results and returns them to the

user
• Two main approaches
– Document distribution
• by far the most popular

– Term distribution

Distributed Evaluation

• Document distribution
– each index server acts as a search engine for a

small fraction of the total collection
– director sends a copy of the query to each of the

index servers, each of which returns the top-k
results

– results are merged into a single ranked list by the
director

• Collection statistics should be shared for
effective ranking

Distributed Evaluation
• Term distribution
– Single index is built for the whole cluster of machines
– Each inverted list in that index is then assigned to one

index server
• in most cases the data to process a query is not stored on a

single machine

– One of the index servers is chosen to process the query
• usually the one holding the longest inverted list

– Other index servers send information to that server
– Final results sent to director

Caching

• Query distributions similar to Zipf
– About ½ each day are unique, but some are very

popular
• Caching can significantly improve effectiveness
– Cache popular query results
– Cache common inverted lists

• Inverted list caching can help with unique
queries

• Cache must be refreshed to prevent stale data

	Slide 1
	Indexes
	Slide 3
	Slide 4
	Slide 5
	Indexes and Ranking
	Abstract Model of Ranking
	Slide 8
	More Concrete Model
	Inverted Index
	Example “Collection”
	Simple Inverted Index
	Slide 13
	Slide 14
	Proximity Matches
	Fields and Extents
	Extent Lists
	Other Issues
	Compression
	Skipping
	Slide 21
	Slide 22
	Skip Pointers
	Index Construction
	Merging
	Merging
	Distributed Indexing
	Example
	MapReduce
	MapReduce
	MapReduce
	Example
	Indexing Example
	Result Merging
	Query Processing
	Document-At-A-Time
	Document-At-A-Time
	Term-At-A-Time
	Term-At-A-Time
	Optimization Techniques
	Slide 41
	Slide 42
	Threshold Methods
	Threshold Methods
	MaxScore Example
	Other Approaches
	Structured Queries
	Evaluation Tree for Structured Query
	Distributed Evaluation
	Distributed Evaluation
	Distributed Evaluation
	Caching

