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Indexes

• Arrays 
• Hash table
• Queue
• Priority Queue
• B-trees
unsorted arrays are slow to search, and sorted 
arrays are slow at insertion. By contrast, hash 
tables and trees are fast for both search and
insertion.
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Indexes

• Which one is good for Text Search?
• Efficient query processing is a particularly 

important problem in web search.
• The query processing algorithm depends on 

the retrieval model, and dictates the contents 
of the index.



RANKING 

Text search engines use a particular form of 
search: ranking
– documents are retrieved in sorted order according 

to a score computing using the document 
representation, the query, and a ranking algorithm

• What is a reasonable abstract model for 
ranking?
– enables discussion of indexes without details of 

retrieval model
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Abstract Model of Ranking

1. The text is transformed into index terms or document features
2. Topical features estimate the degree to which the document is about a 
particular subject. 
3. Document quality feature: 

3.1  The number of web pages that link to this document, 
3.2 The number of days since this page was last updated.



More Concrete Model



Inverted Index

• Each index term is associated with an inverted list
– Contains lists of documents, or lists of word 

occurrences in documents, and other information
– Each entry is called a posting
– The part of the posting that refers to a specific 

document or location is called a pointer
– Each document in the collection is given a unique 

number
– Lists are usually document-ordered (sorted by 

document number)



Example “Collection”



Simple Inverted 
Index



Inverted Index
with counts

•  supports better           
   ranking algorithms



Inverted Index
with positions

•  supports 
proximity matches



Proximity Matches

• Matching phrases or words within a window
– e.g., "tropical fish", or “find tropical within 

5 words of fish”
• Word positions in inverted lists make these 

types of query features efficient
– e.g.,



Fields and Extents

• Document structure is useful in search
– field restrictions
• e.g., date, from:, etc.

– some fields more important
• e.g., title

• Options:
– separate inverted lists for each field type
– add information about fields to postings
– use extent lists



Extent Lists

• An extent is a contiguous region of a 
document
– represent extents using word positions
– inverted list records all extents for a given field 

type
– e.g.,

extent list



Other Issues

• Precomputed scores in inverted list
– e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is 

total feature value for document 1
– improves speed but reduces flexibility

• Score-ordered lists
– query processing engine can focus only on the top 

part of each inverted list, where the highest-
scoring documents are recorded

– very efficient for single-word queries



Compression

• Inverted lists are very large
– e.g., 25-50% of collection for TREC collections using Indri 

search engine
–Much higher if n-grams are indexed

• Compression of indexes saves disk and/or memory 
space
– Typically have to decompress lists to use them
– Best compression techniques have good compression 

ratios and are easy to decompress
• Lossless compression – no information lost



Skipping 

Consider the Boolean query “ galago AND 
animal ”. The word “animal” occurs
in about 300 million documents on the Web 
versus approximately 1 million for
“galago.” If we assume that the inverted lists for 
“galago” and “animal” are in doc-
ument order, there is a very simple algorithm for 
processing this query:



Skipping 
•Let d g be the first document number in the inverted list for 
“galago.”
• Let d a be the first document number in the inverted list for 
“animal.”
• While there are still documents in the lists for “galago” and 
“animal,” loop:
– If d g < d a , set d g to the next document number in the “galago” 
list.
– If d a < d g , set d a to the next document number in the “animal” 
list.
– If d a = d g , the document d a contains both “galago” and “animal”. 
Move both d g and d a to the next documents in the inverted lists for 
“galago” and “animal,” respectively.



Skipping 

• Search involves comparison of inverted lists of 
different lengths
– Can be very inefficient
– “Skipping” ahead to check document numbers is 

much better
– Compression makes this difficult
• Variable size, only d-gaps stored

• Skip pointers are additional data structure to 
support skipping



Skip Pointers

• A skip pointer (d, p) contains a document 
number d and a byte (or bit) position p
– Means there is an inverted list posting that starts 

at position p, and the posting before it was for 
document d

skip pointers
Inverted list



Index Construction

Simple in-memory indexer



Merging

• Merging addresses limited memory problem
– Build the inverted list structure until memory runs 

out
– Then write the partial index to disk, start making a 

new one
– At the end of this process, the disk is filled with 

many partial indexes, which are merged
• Partial lists must be designed so they can be 

merged in small pieces
– e.g., storing in alphabetical order



Merging



Distributed Indexing

• Distributed processing driven by need to index 
and analyze huge amounts of data (i.e., the 
Web)

• Large numbers of inexpensive servers used 
rather than larger, more expensive machines

• MapReduce is a distributed programming tool 
designed for indexing and analysis tasks



Example
• Given a large text file that contains data about 

credit card transactions
– Each line of the file contains a credit card number 

and an amount of money
– Determine the number of unique credit card 

numbers
• Could use hash table – memory problems
– counting is simple with sorted file

• Similar with distributed approach
– sorting and placement are crucial



MapReduce
• Distributed programming framework that focuses 

on data placement and distribution
• Mapper
– Generally, transforms a list of items into another list 

of items of the same length
• Reducer
– Transforms a list of items into a single item
– Definitions not so strict in terms of number of outputs

• Many mapper and reducer tasks on a cluster of 
machines



MapReduce
• Basic process
– Map stage which transforms data records into pairs, 

each with a key and a value
– Shuffle uses a hash function so that all pairs with the 

same key end up next to each other and on the same 
machine

– Reduce stage processes records in batches, where all 
pairs with the same key are processed at the same time

• Idempotence of Mapper and Reducer provides 
fault tolerance
– multiple operations on same input gives same output



MapReduce



Example



Indexing Example



Result Merging

• Index merging is a good strategy for handling 
updates when they come in large batches

• For small updates this is very inefficient
– instead, create separate index for new documents, 

merge results from both searches
– could be in-memory, fast to update and search

• Deletions handled using delete list
– Modifications done by putting old version on 

delete list, adding new version to new documents 
index



Query Processing

• Document-at-a-time
– Calculates complete scores for documents by 

processing all term lists, one document at a time
• Term-at-a-time
– Accumulates scores for documents by processing 

term lists one at a time
• Both approaches have optimization techniques 

that significantly reduce time required to 
generate scores



Document-At-A-Time
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Term-At-A-Time



Term-At-A-Time



Optimization Techniques

• Term-at-a-time uses more memory for 
accumulators, but accesses disk more 
efficiently

• Two classes of optimization
– Read less data from inverted lists
• e.g., skip lists
• better for simple feature functions

– Calculate scores for fewer documents
• e.g., conjunctive processing
• better for complex feature functions



Conjunctive 
Term-at-a-Time



Conjunctive 
Document-at-a-Time



Threshold Methods

• Threshold methods use number of top-ranked 
documents needed (k) to optimize query 
processing
– for most applications, k is small

• For any query, there is a minimum score that each 
document needs to reach before it can be shown 
to the user
– score of the kth-highest scoring document
– gives threshold τ
– optimization methods estimate τ  ′ to ignore documents



Threshold Methods

• For document-at-a-time processing, use score 
of lowest-ranked document so far for τ  ′
– for term-at-a-time, have to use kth-largest score in 

the accumulator table
• MaxScore method compares the maximum 

score that remaining documents could have to 
τ′
– safe optimization in that ranking will be the same 

without optimization



MaxScore Example

• Indexer computes μtree 

– maximum score for any document containing just “tree”

• Assume k =3, τ  ′ is lowest score after first three docs
• Likely that τ  > μ′ tree

– τ  ′ is the score of a document that contains both query 
terms

• Can safely skip over all gray postings



Other Approaches

• Early termination of query processing
– ignore high-frequency word lists in term-at-a-time
– ignore documents at end of lists in doc-at-a-time
– unsafe optimization

• List ordering
– order inverted lists by quality metric (e.g., 

PageRank) or by partial score
– makes unsafe (and fast) optimizations more likely 

to produce good documents



Structured Queries

• Query language can support specification of 
complex features
– similar to SQL for database systems
– query translator converts the user’s input into the 

structured query representation
– Galago query language is the example used here
– e.g., Galago query:



Evaluation Tree for Structured Query



Distributed Evaluation

• Basic process
– All queries sent to a director machine
– Director then sends messages to many index servers
– Each index server does some portion of the query 

processing
– Director organizes the results and returns them to the 

user
• Two main approaches
– Document distribution
• by far the most popular

– Term distribution



Distributed Evaluation

• Document distribution
– each index server acts as a search engine for a 

small fraction of the total collection
– director sends a copy of the query to each of the 

index servers, each of which returns the top-k 
results

– results are merged into a single ranked list by the 
director

• Collection statistics should be shared for 
effective ranking



Distributed Evaluation
• Term distribution
– Single index is built for the whole cluster of machines
– Each inverted list in that index is then assigned to one 

index server
• in most cases the data to process a query is not stored on a 

single machine

– One of the index servers is chosen to process the query
• usually the one holding the longest inverted list

– Other index servers send information to that server
– Final results sent to director



Caching

• Query distributions similar to Zipf
– About ½ each day are unique, but some are very 

popular
• Caching can significantly improve effectiveness
– Cache popular query results
– Cache common inverted lists

• Inverted list caching can help with unique 
queries

• Cache must be refreshed to prevent stale data
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