
Crawling the web
Info 427

Announcements

• Assignment 2 due this week!

The web as a graph

• Each vertex of the graph is a webpage
• Edges represent links

– An edge between A and B means that A links to B
• Crawling the web == traversing this graph

– Except that we don’t know the structure of the
graph ahead of time

• And the graph is changing, even as we
traverse it!

Crawler
Architecture

Of all the URLs in
the frontier,
which do you choose?

Two useful data structures

• Queue (First-in-First-out)
– Add new elements to end
– Remove elements from the front

• Stack (Last-in-First-out)
– Add new elements to the end (or top)
– Also remove elements from the top

Crawler
Architecture

If the frontier is a queue,
the graph is traversed in
breadth-first search (BFS)
order.

If the frontier is a stack,
the graph is traversed in
depth-first search (DFS)
order.

BFS pseudocode:
• Queue Q;
• Add seed nodes (URLs) to end of Q;
• While Q is not empty

– Remove node n from front of Q
– If n has not been visited, add n’s children to the back of Q

DFS pseudocode:
• Stack S;
• Add seed nodes (URLs) to front of S;
• While S is not empty

– Remove node n from front of S
– If n has not been visited, add n’s children to the front of S

BFS pseudocode:
• Add seed nodes (URLs) to end of Q;
• While Q is not empty

– Remove node n from front of Q
– If n has not been visited, add n’s
 children to the back of Q

DFS pseudocode:
• Add seed nodes (URLs) to front of S;
• While S is not empty

– Remove node n from front of S
– If n has not been visited, add n’s
 children to the front of S

Graph traversal

• Breadth First Search
– Visits all children of the root,

then all children of the
children, etc.

– Finds pages along shortest
paths from the seed page

– Implemented with a Queue
(First-in-First-out)

• Depth First Search
– Visits the root’s first child,

then the first child of that
child, etc.

– Implemented with a Stack
(Last-in-First-out)

Finding and following links

• Crawler needs to parse HTML code to find links to
follow
– look for tags like

• Also needs to resolve relative URLs to absolute URLs
– E.g. in the page http://www.cnn.com/linkto/:

 refers to
http://www.cnn.com/linkto/intl.html
 refers to
http://www.cnn.com/US/

http://www.server.com/page.html
http://www.cnn.com/linkto/
http://www.cnn.com/linkto/intl.html
http://www.cnn.com/US/

Canonical URLs

• Crawler converts URLs to a canonical form:
– e.g. convert:

http://www.cnn.com/TECH
http://WWW.CNN.COM/TECH/
http://www.cnn.com/bogus/../TECH/
 to:
http://www.cnn.com/TECH/

http://www.cnn.com/TECH
http://WWW.CNN.COM/TECH/
http://www.cnn.com/TECH/
http://www.cnn.com/TECH/

Document Conversion

• Text is stored in hundreds of incompatible file formats
– e.g., raw text, RTF, HTML, XML, Microsoft Word, PDF

• Non-text files also important
– e.g., PowerPoint, Excel

• Crawlers use a conversion tool
– converts the document content into a tagged text

format such as HTML or XML
– retains some of the important formatting information

Static vs. dynamic pages
• Static pages are just HTML files sent over the internet
• Dynamic pages are ones whose content is computed

in response to your request
– http://www.census.gov/cgi-bin/gazetteer
– http://informatics.indiana.edu/research/colloquia.asp
– http://www.amazon.com/exec/obidos/subst/home/home.h

tml/002-8332429-6490452
– http://www.imdb.com/Name?Menczer,+Erico
– http://www.imdb.com/name/nm0578801/

• What do Google and other search engines do?

http://www.census.gov/cgi-bin/gazetteer
http://www.census.gov/cgi-bin/gazetteer
http://informatics.indiana.edu/research/colloquia.asp
http://www.amazon.com/exec/obidos/subst/home/home.html/002-8332429-6490452
http://www.amazon.com/exec/obidos/subst/home/home.html/002-8332429-6490452
http://www.imdb.com/Name?Menczer,+Erico
http://www.imdb.com/name/nm0578801/

Web Crawling- implementation
issues

• Fetching
• Parsing
• Link extraction and canonicalization
• Spider trap
• Page repository
• concurency

Implementation Issues : concurrency
 A crawler consumes three main resources:

 Network,
 CPU,
 and disk.

 Each is a bottleneck with limits imposed
by bandwidth, CPU speed, and disk
seek/transfer times.

 The simple sequential crawler makes a
very inefficient use of these resources
because at any given time two of them are
idle while the crawler attends to the third.

Web Crawling- concurrency

• Web crawlers waste a lot of time waiting for
responses to requests
– What’s a solution?

Web Crawling- concurrency

• The most straightforward way to speed-up a crawler
is through concurrent processes or threads.

• Multiprocessing may be somewhat easier to
implement than multithreading depending on the
programming language and platform,

• but it may also incur a higher overhead due to the
involvement of the operating system in the
management (creation and destruction) of child
processes.

Parallelism

Each thread or process works as an independent crawler
except for the fact that access to the shared data
structures

● mainly the frontier, and possibly the page repository must
be synchronized.

● In particular a frontier manager is responsible for locking
and unlocking the frontier data structures so that only one
process or thread can write to them at one time.

● Note that both enqueueing and dequeuing are write
operations.

● Additionally, the frontier manager would maintain and
synchronize access to other shared data structures such
as the crawl history for fast look-up of visited URLs.

Distributed Crawling

• Advantages to using multiple computers for crawling
– Helps to put the crawler closer to the sites it crawls
– Reduces the number of sites the crawler has to remember
– Reduces computing resources required

• Distributed crawler uses a hash function to assign URLs to
crawling computers
– hash function should be computed on the host part of each URL

• Disadvantages of distributed crawling?

Politeness

• Modern crawlers use multiple machines to fetch
hundreds of pages at once
– But this could flood sites with requests for pages

• To avoid this, web crawlers use politeness policies
– e.g., delay between requests to same web server

Controlling Crawling
• Even slow crawling will anger some web hosts, who

object to any copying of their data
• Robots.txt file can be used to control crawlers

– Websites can include this file in the main directory of their
site; (nice) crawlers look for it and follow its directions

Crawler performance

• Coverage
– Can the crawler find every page?

• Freshness
– How frequently can a crawler revisit ?

• Trade-off!
– Crawlers need to prioritize which pages to visit

Freshness

• Pages are constantly added, deleted, and modified
• Freshness is the percentage of pages for which the

search engine has a current copy
– Staleness is the % for which we have an outdated copy
– Age is the # of days that an average page is out-of-date
– Search engines try to maximize freshness
– Crawlers revisit pages they have already crawled to see if

they have changed

Freshness vs. Age

Age

• Expected age of a page t days after it was last crawled:

• Page updates generally follow a Poisson distribution
– time until the next update is governed by an

exponential distribution

How often do pages change?
• Cho et al (2000) experiment

How often do pages change?
• Assuming changes to a web page are a sequence of

random events that happen independently at a fixed
average rate

• Poisson process with parameter lambda
• Let X(t) be a random variable denoting the number of

changes in any time interval t
•

Poisson processes
• Let us compute the expected number of changes in

unit time
•

• Lambda is therefore the average number of changes in
unit time

• Called the rate parameter

Estimated age
• Given an estimate of how often a page changes (λ),

we can estimate the current age of a page

e.g. Expected age with λ = 1/7 (one change per week):

of days since last crawl

Ex
pe

ct
ed

 a
ge

 (i
n

da
ys

)

Checking freshness
• HTTP protocol has a special request type called HEAD

that makes it easy to check for page changes
– returns information about page, not page itself

Other crawling strategies

• We’ve seen two crawling strategies so far
– which differ in the order that the web is crawled
– but neither one looks at the content of pages

• Modern “smart” crawlers prioritize links based
on a variety of factors
– e.g. anchor text, text surrounding link, age of

server, estimates of page change rate, etc.
– The exact techniques are closely guarded secrets

Smart crawlers

• Best-first search
– Explore pages that seem “most promising” first
– How to define most promising?

• Selective crawler
– Bias towards most “relevant”, closest to seeds, largest

pagerank, unknown servers, highest rate of change, etc…
• Topical crawlers

– Best first search based on similarity to a topic of interest
– How do we infer the topic of a page?

Crawler
Architecture

Of all the URLs in
the frontier,
which do you choose?

Stacks vs. Queues

• Stack

• Queue

• Priority Queue
– You put (item, priority) pairs into queue
– You remove the highest-priority item from the queue

Priority queue

• Priority queue is a best-first data structure
– When you add something to a PQ, you give an

importance (priority number)
– When you remove something, the PQ gives you

the highest priority item in the queue
– If multiple items have the same priority, it returns

the one that was added first

Priority queue examples

• Hospital emergency room
– Incoming patients see a triage nurse who assigns a

priority to each patient. Highest need patients are
seen first.

• Airplane boarding
– First class, Business class, Coach
– FIFO within each class

• Operating system scheduling
– Important system jobs (memory management,

etc) are given priority over user tasks

Smart
Crawler

Architecture

Store frontier in a
priority queue, so
that the highest
priority link is chosen
here.

Estimate importance
of each URL. E.g., use
surrounding text to
identify “promising”
links, or punish
"spamy" pages, or
bias towards servers
that are popular or
not yet known.

PQ implementation

• Priority queues are typically implemented
using a heap
– A binary tree with a special property: The highest-

priority element of any subtree is always at the
root of the subtree.

– Learn more in a data structures class…

One application: avoiding spam

• Spam is a huge problem on the web
– i.e. Useless pages set up to trick people into visiting them,

e.g. for ad revenue
– Crawlers want to avoid these pages

Spam

• Spam = junk e-mail and web pages

• A big problem! [Commtouch07]

– ~96% of all email traffic on the Internet
– ~150 billion junk emails per day
– Spreads malware, worms, phishing schemes, etc.

• We need classifiers that can automatically detect spam
web pages and emails
– But, it's hard to define what spam is exactly
– So we want to use machine learning, so that the computer

learns what spam looks like over time!

Modeling a document
• Use natural language processing techniques?

– Parse the web page, understand the meaning,
decide if email is spam

– Too difficult for now
• Simpler alternative

– Represent a document as an unordered collection
of words (a bag of words model)

tear

may be

many

reasons

You

want

to

impress
genuine

Rolex

original

safe

There

friends

Statistical motivation
• Spam and (my) non-spam are statistically very different

0

0.1

0.2

0.3

0.4

0.5

0.6

F
ra

ct
io

n
 o

f
e-

m
ai

l m
es

sa
g
es

david think hope going want work university students thanks love

Word

Spam

Non-spam

Statistical motivation
• Spam and (my) non-spam are statistically very different

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
ra

ct
io

n
 o

f e
-m

a
il

m
e

ss
ag

e
s

company statements securities gas investment adobe news professional products energy

Spam

Non-spam

An example

Word # times in
spam

times in
non-spam

Ratio
 (# spam / # nonspam)

log(Ratio)

debt 309 4 77.25 1.88

news 215 39 5.51 0.74

investmen
t

288 13 22.15 1.34

david 12 575 0.021 -1.68

wants 101 268 0.38 -0.42

thanks 49 196 0.25 -1.39

• We can take some documents known to be spam and known
to be legitimate, to estimate relative importance of words

Classifying spam
• Once we’ve constructed this table, we can use a Bayesian

classifier to decide if a new document is spam
– You can learn more about classifiers in a Machine Learning class
– Multiply together the ratios for each word in the document; if

greater than 1, it’s spam, and otherwise not spam
– Or, equivalently, add up the log(ratios) for each word; if greater

than 0, it’s spam, and otherwise not spam

Learning

• An advantage of a Bayesian classifier is that it
“learns” what spam looks like automatically
– Just by counting #’s of words in spam and non-spam.
– No need for hand-crafted rules.
– But a good set of training data is critical.

• The classifier can continue to learn with time
– User corrects the classifier’s errors, classifier adjusts its

word counts accordingly

Bayesian poisoning
• Spammers try to confuse the Bayesian filters
• Passive attacks

– Add many non-spam words to web pages
– Disguise spam words by misspelling (e.g. viagra -> vi@gra)

• Active attacks
– Assume that it’s possible for spammer to see if an email

(or webpage) is filtered out by the classifier
– Send many email variants, observing the filter’s decision
– Tune the emails to stay “one step ahead” of the filter

	Slide 1
	Announcements
	The web as a graph
	Slide 4
	Crawler Architecture
	Two useful data structures
	Crawler Architecture
	Slide 8
	Slide 9
	Graph traversal
	Finding and following links
	Canonical URLs
	Document Conversion
	Static vs. dynamic pages
	Web Crawling
	Slide 16
	Slide 17
	Slide 18
	Parallelism
	Slide 20
	Distributed Crawling
	Politeness
	Controlling Crawling
	Crawler performance
	Freshness
	Freshness vs. Age
	Age
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Estimated age
	Checking freshness
	Other crawling strategies
	Smart crawlers
	Crawler Architecture
	Stacks vs. Queues
	Priority queue
	Priority queue examples
	Smart Crawler Architecture
	PQ implementation
	One application: avoiding spam
	Spam
	Modeling a document
	Statistical motivation
	Statistical motivation
	An example
	Classifying spam
	Learning
	Bayesian poisoning

