
CRAWLING
 THE WEB

Query Process

Details: Text Acquisition
• Crawler (aka Robot)

– Acquires documents for search engine
– Many types – web, enterprise, desktop, etc.
– Web crawlers follow links to find documents

• Must efficiently find huge numbers of web pages

• Commercial robots
– Googlebot, Bingbot, Yahoo! Slurp

Retrieving Web Pages

• Every page a unique uniform resource locator (URL)
• Web pages are stored on servers that use HTTP to

exchange information
• e.g.,

Retrieving Web Pages

• To fetch a web page, the crawler:
– Connects to a domain name system (DNS) server
– DNS translates the hostname into an internet protocol

(IP) address
– Crawler attempts to contact server using specific port
– After connection, crawler sends an HTTP request to

the web server to request a page (e.g. a GET request)

Crawling challenges

• Web is huge and constantly growing
– Web is not under the control of search engine providers
– Web pages are constantly changing

• Crawlers have two goals:
– need to find new pages (maximize coverage)
– update information on known pages (maximize freshness)

Web Crawler

• Starts with a set of seeds – i.e. known URLs
– Seeds are added to a list of known URLS
(called the request queue or the frontier)
– Crawler fetches pages from the request queue

• For each downloaded page, the crawler looks for links to
other pages

• These new links are added to the request queue
– Continue until no more new URLs or disk full

Request queue:
www.iu.edu

Request queue:
www.iu.edu

Request queue:
www.iu.edu

Pages downloaded:
www.iu.edu

Request queue:
www.iu.edu
iu.edu/campuses
twitter.iu.edu
podcast.iu.edu
www.iucat.iu.edu

Pages downloaded:
www.iu.edu

Request queue:
www.iu.edu
iu.edu/campuses
twitter.iu.edu
podcast.iu.edu
www.iucat.iu.edu

Pages downloaded:
www.iu.edu

Request queue:
www.iu.edu
iu.edu/campuses
twitter.iu.edu
podcast.iu.edu
www.iucat.iu.edu

Pages downloaded:
www.iu.edu
iu.edu/campuses

Request queue:
www.iu.edu
iu.edu/campuses
twitter.iu.edu
podcast.iu.edu
www.iucat.iu.edu
www.iub.edu
www.iupui.edu
www.iue.edu
…

Pages downloaded:
www.iu.edu
iu.edu/campuses

Request queue:
www.iu.edu
iu.edu/campuses
twitter.iu.edu
podcast.iu.edu
www.iucat.iu.edu
www.iub.edu
www.iupui.edu
www.iue.edu
…

Pages downloaded:
www.iu.edu
iu.edu/campuses

Request queue:
www.iu.edu
iu.edu/campuses
twitter.iu.edu
podcast.iu.edu
www.iucat.iu.edu
www.iub.edu
www.iupui.edu
www.iue.edu

Pages downloaded:
www.iu.edu
iu.edu/campuses
twitter.iu.edu

Request queue:
www.iu.edu
iu.edu/campuses
twitter.iu.edu
podcast.iu.edu
www.iucat.iu.edu
www.iub.edu
www.iupui.edu
www.iue.edu
twitter.iu.edu/news

Pages downloaded:
www.iu.edu
iu.edu/campuses
twitter.iu.edu

The web as a graph

• Each vertex of the graph is a webpage
• Edges represent links

– An edge between A and B means that A links to B
• Crawling the web == traversing this graph

– Except that we don’t know the structure of the
graph ahead of time

• And the graph is changing, even as we traverse
it!

Crawler
Architecture

Crawler
Architecture

Of all the URLs in
the frontier,
which do you choose?

Two useful data structures

• Queue (First-in-First-out)
– Add new elements to end
– Remove elements from the front

Stack (Last-in-First-out)
– Add new elements to the end (or top)
– Also remove elements from the top

Crawler
Architecture

If the frontier is a queue,
the graph is traversed in
breadth-first search (BFS)
order.

If the frontier is a stack,
the graph is traversed in
depth-first search (DFS)
order.

BFS pseudocode:
• Queue Q;
• Add seed nodes (URLs) to end of Q;
• While Q is not empty

– Remove node n from front of Q
– If n has not been visited, add n’s children to the back of Q

DFS pseudocode:
• Stack S;
• Add seed nodes (URLs) to front of S;
• While S is not empty

– Remove node n from front of S
– If n has not been visited, add n’s children to the front of S

BFS pseudocode:
• Add seed nodes (URLs) to end of Q;
• While Q is not empty

– Remove node n from front of Q
– If n has not been visited, add n’s

 children to the back of Q

DFS pseudocode:
• Add seed nodes (URLs) to front of S;
• While S is not empty

– Remove node n from front of S
– If n has not been visited, add n’s
 children to the front of S

Graph traversal

• Breadth First Search
– Visits all children of the root,

then all children of the
children, etc.

– Finds pages along shortest
paths from the seed page

– Implemented with a Queue
(First-in-First-out)

• Depth First Search
– Visits the root’s first child,

then the first child of that
child, etc.

– Implemented with a Stack
– (Last-in-First-out)

Preferential crawler
 The frontier is implemented as a priority

queue rather than a FIFO queue.
 It assigns each unvisited link a priority

based on an estimate of the value of the
linked page.

 The estimate can be based on topological
properties
 the indegree of the target page
 content properties
 the similarity between a user query and the

source page
 or any other combination of measurable

features.

Implementation Issues : Fetching

 To fetch pages
 a crawler acts as a Web client; it sends an

HTTP request to the server hosting the page
and reads the response.

 The client needs to timeout connections to
prevent spending unnecessary time waiting
for responses from slow servers or reading
huge pages.

Implementation Issues : Parsing

 Once (or while) a page is downloaded, the
crawler parses its content, i.e., the HTTP
payload, and extracts information both to
support
 the crawler’s master application (e.g.,

indexing the page if the crawler supports a
search engine)

 and to allow the crawler to keep running
(extracting links to be added to the frontier)

Implementation Issues : Parsing

 Parsing may imply
 simple URL extraction from hyperlinks,
 or more involved analysis of the HTML code.

 The Document Object Model (DOM)
establishes the structure of an HTML page
as a tag tree,

Implementation Issues : Parsing

Implementation Issues : stop words removal

 When parsing a Web page to extract the
content or to score new URLs suggested
by the page, it is often helpful to remove
so-called stopwords,
 i.e., terms such as articles and conjunctions,

which are so common that they hinder the
discrimination of pages on the basis of
content.

Implementation Issues : Stemming

 Another useful technique is stemming,
 by which morphological variants of terms are

conflated into common roots (stems).
 In a topical crawler where a link is scored

based on the similarity between its source
page and the query, stemming both the
page and the query helps improve the
matches between the two sets and the
accuracy of the scoring function.

Finding and following links

• Crawler needs to parse HTML code to find links
to follow
– look for tags like <a href=
“http://site.com/page.html”>

Also needs to resolve relative URLs to absolute
URLs
– E.g. in the page http://www.cnn.com/linkto/:

 refers to
http://www.cnn.com/linkto/intl.html

 refers to
http://www.cnn.com/US/

http://www.server.com/page.html
http://www.cnn.com/linkto/
http://www.cnn.com/linkto/intl.html
http://www.cnn.com/US/

Canonical URLs

• Crawler converts URLs to a canonical form:
– e.g. convert:

http://www.cnn.com/TECH
http://WWW.CNN.COM/TECH/
http://www.cnn.com/bogus/../TECH/

 to:
http://www.cnn.com/TECH/

http://www.cnn.com/TECH
http://WWW.CNN.COM/TECH/
http://www.cnn.com/TECH/
http://www.cnn.com/TECH/

Canonical URLs

• Crawler converts URLs to a canonical form:
– e.g. convert:

http://www.cnn.com/TECH
http://WWW.CNN.COM/TECH/
http://www.cnn.com/bogus/../TECH/

 to:
http://www.cnn.com/TECH/

http://www.cnn.com/TECH
http://WWW.CNN.COM/TECH/
http://www.cnn.com/TECH/
http://www.cnn.com/TECH/

Document Conversion

• Text is stored in hundreds of incompatible file
formats
– e.g., raw text, RTF, HTML, XML, Microsoft Word,

PDF
• Non-text files also important

– e.g., PowerPoint, Excel
• Crawlers use a conversion tool

– converts the document content into a tagged text
format such as HTML or XML

– retains some of the important formatting
information

Implementation Issues : Page repository

The shortcoming of this approach is that a
large scale crawler would incur significant
time and disk space overhead from the
operating system to manage a very large
number of small individual files.

Implementation Issues : Page repository

 Once a page is fetched, it may be
stored/indexed for the master application
In its simplest form a page repository may
store the crawled pages as separate files.
 Each page must map to a unique file name.
 One way to do this is to map each page's

URL to a compact string using some hashing
function with low probability of collisions, e.g.,
MD5.

 The resulting hash value is used as a
(hopefully) unique file name.

Implementation Issues : Page repository

 A more efficient solution is to combine
many pages into one file.
 A naïve approach is to simply concatenate

some number of pages (say 1,000) into each
file, with some special markup to separate
and identify the pages within the file.

 This requires a separate look-up table to map
URLs to file names and IDs within each file.

 A better method is to use a database to
store the pages, indexed by (canonical)
URLs

Implementation Issues : concurrency

 A crawler consumes three main resources:
 Network,
 CPU,
 and disk.

 Each is a bottleneck with limits imposed
by bandwidth, CPU speed, and disk
seek/transfer times.

 The simple sequential crawler makes a
very inefficient use of these resources
because at any given time two of them are
idle while the crawler attends to the third.

Implementation Issues : concurrency

 HOW to speed up the crawler?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

